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We report an exact result for the electrostatic potential energy stored in a hemispherical surface
with uniform surface charge density. This system lacks the spherical symmetry of a uniformly
charged spherical surface or its solid sphere counterpart. Consequently, a hemispherical surface with
all its charge uniformly spread on its surface represents an interesting case study in electrostatics.
In this work we combine the fact that the body has axial symmetry with clever mathematical
tools to obtain an outcome that is remarkably simple. The final exact expression obtained for the
electrostatic potential energy stored in a hemispherical surface with uniform surface charge density
answers a long-standing question. Though the bulk of the treatment is analytical, the accuracy of the
findings can also be ascertained by using symbolic computation software or numerical recipes. Hence,
the present analytical results can be compared to ones obtained with various powerful numerical
methods which nowadays are routinely used to check the correctness of analytical and semi-analytical
calculations.
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I. INTRODUCTION

In electrostatics, self-energy of a particular charge dis-
tribution is the energy required to assemble the charges
from infinity to that particular configuration. This quan-
tity represents the electrostatic potential energy stored
in the system of charges1–6. The calculation of the to-
tal electrostatic potential energy stored in a body with
continuous charge distribution is generally very difficult
if the charged body has an arbitrary shape or form. The
possibility of having exact analytic results depends heav-
ily on whether the body under consideration possesses
some given symmetry (See Chapter XII in Ref.[ 7]) and
how the charge is distributed8–10. However, finding the
exact analytical equilibrium charge distribution (the one
that makes the body an equipotential) is not a simple
problem even for a regular body11. The few exceptions
where the equilibrium charge distribution is known are
cases such as that of an infinitely thin two-dimensional
(2D) circular conducting disk or the trivial example of
a three-dimensional (3D) conducting spherical surface.
Curiously enough, there is not an entirely definite an-
swer to the exact nature of the equilibrium charge dis-
tribution even in such a simple-looking system as a one-
dimensional (1D) straight wire12–15.

Since the equilibrium charge distribution for the ma-
jority of regular bodies (solid cylinder, hollow cylindrical
shell, solid cube, square plate, etc.) is impossible to ob-
tain analytically one typically assumes a uniform charge
distribution in the hope of facilitating the calculations.
The assumption of uniform charge distribution over the
volume or surface of a given body may lead to analytic
results for particular regular bodies with high spherical or
cylindrical symmetry16. The mathematical methods to
obtain such results are not unique but typical approaches
that work well are variants of the 2D or 3D Fourier trans-

form methods for systems with spherical/cylindrical sym-
metry or suitable mathematical transformations that rely
on auxiliary functions for square/rectangular plate sys-
tems. For instance, the electrostatic self-energy of a uni-
formly charged solid cylinder17, solid cube18 or square
plate19 was obtained analytically using one or another of
the methods mentioned above.

A uniformly charged hemispherical surface stands out
within the realm of regular bodies20–25 since it repre-
sents a simple system that lacks the spherical symmetry
of its full spherical surface counterpart. For this reason,
calculation of its electric field or potential at an arbi-
trary point in space is very difficult and, we believe, an
exact expression is not possible in a compact analytical
form. Nevertheless, despite the lack of spherical symme-
try, a uniformly charged hemispherical surface still re-
tains the axial symmetry around the azimuthal (longitu-
dinal) angle. This allows us to deduce that the electric
field or potential are only functions of radial distance, r
and polar angle, θ, but not azimuthal angle, ϕ and can

be generally written, respectively, as ~E(r, θ) and V (r, θ)
(obviously, with the assumption that a spherical system
of coordinates is chosen with origin at the center of the
hemispherical surface and x− y plane on the ”equator”).
One can obtain the electric field and potential at special
points like the center of hemispherical surface26 but we
are not aware of compact general analytical results for ei-
ther of them at an arbitrary location in space. One may
be tempted to conclude from this fact that the electro-
static energy stored in a hemispherical surface with uni-
form surface charge density cannot be calculated exactly
given that the electric field or potential are not known
analytically.

This work shows that this conclusion is not exactly
true. Despite the difficult nature of the problem, we
were able to calculate this quantity. The mathematical
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approach used to solve the problem is not trivial. The ob-
jective of the calculation may look out of reach at various
steps including the moment when a complicated infinite
sum appears at the end of the process. Nevertheless, the
greatest reward comes right at this juncture. It turns out
that this infinite sum can be calculated exactly and the
final result for the electrostatic potential energy stored
in a hemispherical surface with uniform surface charge
density is remarkably simple.

II. MODEL AND RESULTS

Let us consider a hemispherical surface with uniform
surface charge density. It is assumed that the hemispher-
ical surface has a radius, R and contains a total positive
charge, Q that is spread uniformly over its surface. As a
result, the uniform surface charge density may be written
as:

σ =
Q

2π R2
. (1)

For simplicity, let us choose a ”northern” hemispherical
surface. We adopt a spherical system of coordinates with
origin at the center of the hemispherical surface and x−
y plane on the ”equator”. For this choice, the surface
domain that contains the uniformly distributed charge is
represented by:

S :
{

r = R ; 0 ≤ θ ≤
π

2
; 0 ≤ ϕ < 2π

}

, (2)

where θ is the polar angle and ϕ is the azimuthal (lon-
gitudinal) angle. Consider the elementary charges, dQi

located at position vectors, ~ri on the hemispherical sur-
face (for such a case, in spherical coordinates, ri = R,
0 ≤ θi ≤ π/2, 0 ≤ ϕi < 2π ). These elementary charges
are uniformly spread on the respective elementary sur-
faces, dSi = R2 sin θi dθi dϕi where i = 1 and 2. The
electrostatic potential energy stored in the body, namely,
its electrostatic self-energy is written as:

U =
ke σ

2

2

∫∫

S

dS1

∫∫

S

dS2

1

|~r1 − ~r2|
, (3)

where ke is Coulomb’s electric constant, S is the inte-
gration domain in Eq.(2) and the factor ”2” is needed
to avoid double-counting. The quantity in Eq.(3) can be
written more explicitly as:

U =
ke σ

2 R4

2

π/2
∫

0

dθ1 sin θ1

2π
∫

0

dϕ1

π/2
∫

0

dθ2 sin θ2

2π
∫

0

dϕ2

1

|~r1 − ~r2|
. (4)

The calculation of the integral above is not easy. We
used various approaches and strategies to calculate it ex-
actly since it is obvious that direct integration does not

work. After several attempts, we found out that the only
approach that succeded is the one that we report in this
work. The scheme that we implement utilizes the ax-
ial symmetry of the hemispherical surface in a spherical
system of coordinates and employs suitable mathemat-
ical transformations that eventually reduce the integral
problem into a final infinite series problem. The resulting
infinite series is rapidly convergent and can be summed
exactly. The only drawback of the process is that several
mathematical transformations rely heavily on properties
of various special functions such as Legendre polynomi-
als.
We start the calculation of the integral in Eq.(4) by

rewriting 1/|~r1 − ~r2| using the Legendre formula for r1 =
r2 = R which reads:

1

|~r1 − ~r2|
=

1

R

∞
∑

l=0

Pl(cos γ) , (5)

where γ is the angle included between vectors ~r1 and ~r2
and Pl(cos γ) are Legendre polynomials. Appendix C in
pg. 598 of Ref.[ 7] represents a good quick introduction to
the main properties of the Legendre polynomials. Note
that: cos γ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2).
The following addition theorem found in pg. 599 of

Ref.[ 7] holds for Legendre polynomials:

Pl(cos γ) = Pl(cos θ1)Pl(cos θ2)+

2
l

∑

m=1

(l −m)!

(l +m)!
Pm
l (cos θ1)P

m
l (cos θ2) cos [m (ϕ1 − ϕ2)] ,(6)

where Pm
l (cos θ) are the associated Legendre polynomi-

als. One substitutes the quantity Pl(cos γ) from Eq.(6)
into Eq.(5) and integrates the resulting expression over
the azimuthal angles ϕ1 and ϕ2. The terms with m =
1, 2, . . . do not contribute when one carries out such an
integration:

2π
∫

0

dϕ1

2π
∫

0

dϕ2

1

|~r1 − ~r2|
=

(2π)2

R

∞
∑

l=0

Pl(cos θ1)Pl(cos θ2) .

(7)
After substituting the result from Eq.(7) into the ex-

pression in Eq.(4) one obtains:

U =
ke σ

2 R4

2

(2π)2

R

∞
∑

l=0

{[ π/2
∫

0

dθ1 sin θ1 Pl(cos θ1)

]

[ π/2
∫

0

dθ2 sin θ2 Pl(cos θ2)

]}

. (8)

At this juncture, one introduces the dummy variable
x = cos θi (i = 1, 2) which allows one to write:

U =
1

2

ke Q
2

R

∞
∑

l=0

[ 1
∫

0

dxPl(x)

]2

. (9)
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The result above can be easily verified after recalling the
definition of σ = Q/(2π R2) from Eq.(1) which immedi-
ately leads to the expression σ2 R4 (2π)2 = Q2. A final
analytical result now hinges on our ability to overcome
the following last two hurdles: (i) Calculate the integral

of a Legendre polynomial over half range,
∫ 1

0
dxPl(x) =

c(l) where c(l) is some non-obvious l-dependent param-
eter; and (ii) Calculate a potentially infinite sum of l-
dependent terms,

∑

∞

l=0 c(l)
2 hoping that such a sum may

lead to an analytic result. Having reached this stage, let
us simplify the notation and write the quantity of interest
as:

U =
C

2

ke Q
2

R
, (10)

where

C =

∞
∑

l=0

[ 1
∫

0

dxPl(x)

]2

. (11)

Integrals of Legendre polynomials over half range are
not routinely found in standard textbooks27–29. There-
fore, we had to do some extra work to obtain a gen-

eral formula for the integral,
∫ 1

0
dxPn(x) ; n = 0, 1, 2, . . .

where the recurrent formula for the Legendre polynomi-
als was used. Non-zero integrals occur only for Legendre
polynomials of order 0 and order 1, 3, 5, . . .. The final
expressions may be written in a convenient form as:

1
∫

0

dxP0(x) = 1 , (12)

and

1
∫

0

dxP2 l+1(x) =
(−1)l

22 l+1 (l + 1)

(2 l)!

(l!)2
; l = 0, 1, . . . .

(13)
Note the index (2 l+1) representing the order of the Leg-
endre polynomials. This notation guarantees that only
Legendre polynomials of the form, P1(x), P3(x), . . . are
picked up when the indices l = 0, 1, . . . are selected in
Eq.(13). This means that C can be written as:

C = 1 +

∞
∑

l=0

[ 1
∫

0

dxP2 l+1(x)

]2

. (14)

One uses the result from Eq.(13) to explicitly express C
as an infinite sum:

C = 1 +

∞
∑

l=0

[

(−1)l

22 l+1 (l + 1)

(2 l)!

(l!)2

]2

. (15)

The constant, C is of the order of 1, it is a rapidly con-
vergent sum and can be found numerically. The sum-
mation with l up to 50 gives C = 1.27318, for l up to

100 gives C = 1.27322, and with l up to 200 it results in
C = 1.27324. The last estimate is very close to 4/π with
precision of ±5× 10−6.
In fact, it became immediately clear that:

C =
4

π
, (16)

when we were pleasantly surprised to find out the follow-
ing simple result for the following infinite sum:

∞
∑

l=0

[

(−1)l

22 l+1 (l + 1)

(2 l)!

(l!)2

]2

=
4− π

π
=

4

π
− 1 . (17)

The formula above was obtained by using symbolic com-
putation software30 and the result was checked numeri-
cally to a very high degree of accuracy. This allows us to
write the quantity in Eq.(10) as:

U =
2

π

ke Q
2

R
, (18)

where Q represents the total charge spread uniformly on
a hemispherical surface with radius R.
Note that the expression in Eq.(8) for a hemispherical

surface can be generalized to an arbitrary spherical cap
surface of radius R with polar angle θ between 0 and
θmax(≤ π). For such an occurrence, we write:

U(θmax) = ke σ
2 R3 2π2 C(θmax) , (19)

where

C(θmax) =

∞
∑

l=0

[ θmax
∫

0

dθ sin θ Pl(cos θ)

]2

. (20)

In this case, the surface charge density appearing in
Eq.(19) is not the one in Eq.(1), but is the one given
from the following expression:

σ =
Q

2π R2(1− cos θmax)
, (21)

where the quantity in the denominator represents the
surface area of the spherical cap surface under consid-
eration. The analysis of the dependence of electrostatic
self-energy on the angle θmax would be very useful. The
integrals in Eq.(20) can be calculated numerically. As
special cases, θmax = π/2 represents a hemispherical
surface while θmax = π corresponds to a full spherical
surface. Note that, in this notation, C(θmax = π/2) =
C = 4/π ≈ 1.27324 for the case of a hemispherical sur-
face. To illustrate this approach we considered two dif-
ferent angles, θmax = π/4 and π/2 and calculated nu-
merically C(θmax) for increasing values of l. The results
for C(θmax) are shown in Table. I. We also verified that
the sums converge very well not only for these two val-
ues of θmax, but also for few other values limited to the
π/10 ≤ θmax ≤ π range.
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TABLE I: Numerically calculated values of C(θmax) for in-
creasing values of l ranging from l = 10 to l = 100. The
data have a numerical accuracy of five digits after the deci-
mal point meaning that the fifth digit after the decimal point
is rounded.

l C(θmax = π/4) l C(θmax = π/2)

10 0.19227 10 1.27800

20 0.19296 20 1.27286

30 0.19309 30 1.27307

40 0.19314 40 1.27314

50 0.19317 50 1.27318

100 0.19320 100 1.27322

Furthermore, one can modify Eq.(19) to derive a gen-
eral formula for the electrostatic energy stored in any
given spherical cap surface with arbitrary angle, θmax

with the understanding that the total charge, Q is kept
constant and uniformly spread over the spherical cap sur-
face:

U(θmax) =
1

2

C(θmax)

(1− cos θmax)
2

ke Q
2

R
. (22)

In Fig. 1 we show the dependence of U(θmax) as a
function of θmax for 8 different spherical cap surfaces
corresponding to values of angle, θmax = (π/8)n ;
n = 1, . . . , 8. The constant C(θmax) is numerically cal-
culated from Eq.(20) by taking l = 100. Note that
U(θmax = π/2) corresponds to the result in Eq.(18)
for a uniformly charged hemispherical surface. One also
notices that U(θmax = π) = 0.5 ke Q

2/R which is the
known result for the electrostatic self-energy of a uni-
formly charged full spherical surface.

III. DISCUSSION AND CONCLUSIONS

In this work we obtained an exact result for the electro-
static energy stored in a hemispherical surface with uni-
form surface charge density. A uniformly charged hemi-
spherical surface with all the charge uniformly spread
on its surface represents a very challenging problem to
solve since its lacks the spherical symmetry of a uniformly
charged spherical surface or a solid sphere. Despite these
challenges, it was established that an analytic solution is
possible if one uses a combination of suitable mathemat-
ical transformations appropriate for the axial symmetry
of the problem within the framework of a spherical sys-
tem of coordinates.
We started the calculation of the energy by employing

a very useful mathematical transformation that applies
to a standard Coulomb interaction potential in a spheri-
cal system of coordinates and involves Legendre polyno-
mials. One may not see any considerable reduction of
the difficulty of the problem by doing so, but at least,

U
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FIG. 1: Values of the stored electrostatic self-energy, U(θmax)
as a function of θmax for 8 different spherical cap surfaces
with angle θmax ranging from π/8 to π (Filled solid circles).
The spherical cap surfaces are uniformly charged with total
charge, Q kept constant. The energy is expressed in units of
keQ

2/R. Note that U(θmax = π) = 0.5 keQ
2/R is the exact

known value of the electrostatic potential energy stored in a
uniformly charged spherical surface. The constant C(θmax)
was calculated numerically from the corresponding sum in
Eq.(20) by taking l = 100 in all cases considered. The solid
line joining the data points is a guide for the eyes.

this transformation removes the cumbersome Coulomb
term from the denominator. By proceeding further, one
sees that the method used allows one to obtain a general
expression of the electrostatic energy as an infinite sum
of terms involving integrals of Legendre polynomials over
their half range. Integrals of Legendre polynomials over
their half range are not routine. As a result, we had to
obtain an exact analytic result for such integrals. This
allowed us to write the expression of the electrostatic en-
ergy as an infinite sum. Luckily, this infinite sum could
be calculated exactly with the final result that is quite
simple and compact.

One can employ the same technique to calculate the
electrostatic potential and field around a hemispheri-
cal surface or a spherical cap surface. Based on the
symmetry of the problem, both potential and field can
be expressed, respectively, as functions: V (r, θ) and
~E(r, θ) = −~∇V (r, θ). Analytical results may be possible
for special cases, for instance, along the z axis (θ = 0),
but in general the final expressions should be numerically
calculated. Knowing the electric field around a charged
surface of a given shape, for instance around a spheri-
cal cap surface, turns out to be an important question
to answer. For example, space-based radio antennas in
spacecrafts become negatively charged and this occur-
rence affects the accuracy of radio-wave measurements.



5

Therefore, adjustments for the electric field coming from
charges on the antennas should be made. Such antennas
are made of conductors and have a shape that is gen-
erally a paraboloid of revolution. Nevertheless, one may
crudely model them as a uniformly charged spherical cap
surface and, thus, calculate numerically the electric field
in the surrounding.
A discussion on how the electrostatic self-energy of a

conducting hemispherical surface compares to that with
uniform charge distribution for the same radius and same
charge is also helpful since it shows to the reader the in-
tricacies of the theory of the potential. Calculating the
equilibrium charge distribution on a conducting hemi-
spherical surface, namely, obtaining the precise analytic
form of the surface charge density that leads to an equipo-
tential surface (same potential all over the hemispheri-
cal surface) is an unsolvable analytical problem. There
are very few regular conducting bodies (apart a spher-
ical surface or solid sphere) for which this problem is
analytically solvable. A conducting disk is a rare ex-
ample where an exact solution is available. It is known
that the equilibrium surface charge density of a charged
conducting disk is strikingly different from that of a uni-
formly charged disk. Nevertheless, the electrostatic self-
energy of a conducting disk does not differ much from
its uniformly charged counterpart with a relative energy
difference between them of about 8% in percentage22.

Based on general physical considerations and based on
our knowledge of the case study of a conducting disk, we
expect the electrostatic self-energy stored in a conduct-
ing hemispherical surface with equlibrium charge distri-
bution to be smaller than, but likely not very different
from, the value found for the corresponding uniformly
charged hemispherical surface.

The result obtained for the electrostatic energy stored
in a hemispherical surface with uniform surface charge
density is important in its own merit and can be useful to
other scientific disciplines. For instance, such a result can
help computational physicists to gauge the accuracy of
various theoretical approximations and numerical meth-
ods used in computational physical sciences since the cal-
culation of the electrostatic self-energy of a hemispherical
surface with uniform surface charge density is not a sim-
ple task for numerical computational methods31,32. In
this sense, we believe that the results reported here may
be of interest to the specialized, as well as to the broad
audiences of researchers working in the field.
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